
312 PHASE D E T E R M I N A T I O N  FOR SPHERICAL VIRUSES 

RAYMENT, I., BAKER, T. S. & CASPAR, D. L. D. (1983). Acta 
Cryst. B39, 505-516. 

RAYMENT, I., BAKER, T. S., CASPAR, D. L. D. & MURAKAMI, 
W. T. (1982). Nature (London), 295, 110-115. 

ROSSMANN, M. G. (1990). Acta Cryst. A46, 73-82. 
ROSSMANN, M. G., ARNOLD, E., ERICKSON, J. W., FRANKEN- 

BERGER, E. A., GRIFFITH, J. P., HECHT, H. J., JOHNSON, 
J. E., KAMER, G., LUO, M., MOSSER, A. G., RUECKERT, 
R. R., SHERRY, B. & VRIEND, G. (1985). Nature (London), 317, 
145-153. 

ROSSMANN, M. G. & BLOW, D. M. (1962). Acta Cryst. 15, 
24-31. 

ROSSMANN, M. G. &JOHNSON, J. E. (1989). Annu. Rev. Biochem. 
58, 533-573. 

SCHMIDT, T., JOHNSON, J. E. & PHILLIPS, W. E. (1983). Virology, 
127, 65-73. 

SMITH, M. H. (1968). In Handbook of Biochemistry, Selected Data 
for Molecular Biology, edited by H. A. SOBER, pp. C-28- 
C-35. Cleveland: CRC Press. 

TSAO, J. (1990). PhD thesis, Purdue Univ., West Lafayette, Indiana, 
USA. 

TSAO, J., CHAPMAN, M. S., AGBANDJE, M., KELLER, W., SMITH, 
K., Wu, H., Luo,  M., SMITH, T. J., ROSSMANN, M. G., COM- 
PANS, R W. & PARRISH, C. R. (1991). Science 251, 1456-1464. 

TSAO, J., CHAPMAN, M. S. & ROSSMANN, M. G. (1992). Acta 
Cryst. A48, 293-301. 

TSAO, J., CHAPMAN, M. S., Wu, H., AGBANDJE, M., KELLER, 
W. & ROSSMANN, M. G. (1992). Acta Cryst. B48, 75-88. 

VALEG,~RD, K., LILJAS, L., FRIDBORG, K. & UNGE, T. (1990). 
Nature (London), 345, 36-41. 

WOBBE, C. R., MITRA, S. & RAMAKRISHNAN, V. (1984). Bio- 
chemistry, 23, 6565-6569. 

Acta Cryst. (1992). A48, 312-322 

Some Applications of the Phased Translation Function in Macromolecular 
Structure Determination 

BY G. A. BENTLEY AND A. HOUDUSSE 

Unitd d'Immunologie Structurale ( C N R S  URA 359), Institut Pasteur, 25 rue du Dr Roux, 
Paris 75724, France 

(Received 14 February 1991; accepted 5 November 1991) 

Abstract 

Although the phased translation function was first 
described some time ago [Colman, Fehlhammer & 
Bartels (1976). In Crystallographic Computing 
Techniques, edited by F. R. Ahmed, K. Huml & B. 
Sedhi~ek, pp. 248-258. Copenhagen: Munksgaard], 
it has been little used, especially in the application 
of molecular replacement to macromolocular struc- 
tures. Nevertheless, the procedure is relatively easy 
to apply and deserves wider use. In this paper the 
versatility of the phased translation function in 
a number of different applications is examined 
and experience gained in obtaining optimal results 
in protein structure determination by this meth- 
od is reported. Examples given show how it can 
be used to position an oriented fragment, to locate 
independent components with respect to a common 
crystallographic origin and to choose correctly 
between enantiomorphic space groups. Its perfor- 
mance is compared with other translation functions 
in common use. 

1. Introduction 

Molecular replacement is widely used to determine 
macromolecular structures since there now exists a 
large resource of known structures which may contain 
one or more examples closely homologous to the 
molecule under study. The method proceeds in two 
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stages. Firstly, the homologous molecule of known 
structure, or a fragment of it, is oriented in the unit 
cell of the unknown structure by means of a rotation 
function. Secondly, the correctly oriented homologue 
is positioned with respect to a crystallographic origin 
using a translation function, providing an initial 
model of the unknown crystal structure for further 
refinement. Whereas the rotation functions in current 
use exploit properties of the Patterson function (Ross- 
mann & Blow, 1962; Huber, 1965; Crowther, 1972), 
translation functions may use the Patterson function 
(Crowther & Blow, 1967; Harada, Lifchitz, Berthou 
& Jolles, 1981), the correlation between the observed 
and calculated structure amplitudes, as in the R- 
factor search (Taylor & Morley, 1959; Fujinaga & 
Read, 1987), or phased structure amplitudes, as in 
the phased translation function (Colman, Fehlham- 
mer & Barrels, 1976; Doesburg & Beurskens, 1983; 
Read & Schierbeek, 1988; Cygler & Desrochers, 
1989). 

We have used the phased translation function 
(PTF) to aid the solution of two crystal structures of 
Fab fragments by molecular replacement: the com- 
plex FabD1.3-FabE225 (Bentley, Boulot, Riottot & 
Poljak, 1990) and FabE5.2 (Houdusse, Bentley, 
Boulot, Eisel6 & Poljak, unpublished results). 
Although we used it primarily to locate independent 
components with respect to a common origin, we 
performed additional calculations to test its general 
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utility. This paper reports some of this experience 
and discusses the use of the PTF to resolve certain 
problems that may arise in the application of 
molecular replacement to protein structure determi- 
nation. To this end, we also include test calculations 
performed with the antibody fragment FvD1.3 (Bhat, 
Bentley, Fischmann, Boulot & Poljak, 1990) which 
had already been solved by molecular replacement. 
In particular, we compare this approach with other 
methods commonly used to solve the translation 
problem. 

2. The phased translation function 

The mathematical basis of the PTF has been described 
elsewhere (Colman, Fehlhammer & Bartels, 1976; 
Doesburg & Beurskens, 1983; Read & Schierbeek, 
1988). The principle of the function is best visualized 
in real space. The electron density of the model 
homologous structure, correctly oriented by the rota- 
tion function, is arbitrarily positioned in a unit cell 
with symmetry P1 but with the dimensions and angles 
of the unknown crystal form. The model electron 
density is then translated at regular grid intervals over 
the electron density of the unknown structure 
obtained, for example, by isomorphous replacement 
or by using calculated phases from a partial structure. 
At each grid point, t, the integral, S(t), of the superim- 
posed electron densities is calculated, 

S(t) = ~ P(X)Pmodel(x--t) dx (1) 
v 

where p and Pmodel are the densities of the unknown 
crystal structure and the model structure respectively. 
Since Pmodel contains one orientation only (i.e. has 
symmetry P1), the volume of integration, V, is the 
complete unit cell. The maximum of S(t) corresponds 
to the optimum superposition of the known structure 
onto the unknown structure and its coordinates thus 
give the required vector translation of the model for 
correct positioning in the unit cell. While the calcula- 
tion of S(t) may be performed in direct space, it may 
also be calculated in reciprocal space as a Fourier 
summation, 

S(t)=(1/V) ~ F(h)F*o,~e,(h) exp (-27rih.t) (2) 
h 

where F(h) and Fmoael(h) are the structure factors of 
p and Pmodel respectively. Since Fmodel(h) has P1 
symmetry, the summation is performed over the 
whole of reciprocal space and the structure factors, 
F(h), must be expanded accordingly. 

The successful application of the PTF has been 
reported for a small number of protein structures 
solved by molecular replacement. In these examples, 
phases of the structure factors of the unknown 
molecule were provided either by isomorphous 
replacement at low resolution, where the electron 
density maps had not been interpreted (Colman, 

Deisenhofer, Huber & Palm, 1976; Schierbeek et al., 
1989; Bentley et al., 1990), or by calculated phases 
from partial models (Cygler & Anderson, 1988b; 
Cygler & Desrochers, 1989). 

The use of the PTF with calculated phases from 
partial structures was described by Doesburg & Beur- 
skens (1983), who applied the method to small 
molecules. The oriented model is at first arbitrarily 
positioned in the unit cell. The observed structure 
amplitudes are then expanded by crystal symmetry 
to P1 and phased by this molecule alone (i.e. 
molecules generated by the space-group symmetry 
were not included), providing the structure factors, 
F(h), for (2). The electron density map calculated 
from these structure factors thus contains not only 
the oriented model used for phasing but also its 
symmetry components related to the origin whose 
position is to be determined. These symmetry-related 
components will, of course, appear with a lower 
weight in the electron density map. If they can be 
located, the positions of the symmetry elements may 
then be deduced and the translation problem is 
solved. This is achieved as follows. A space-group 
symmetry operation is applied to the arbitrarily 
placed but correctly oriented model. This is used as 
a search model by providing the calculated structure 
fac to r s ,  Fmodel(h), for (2). If A is the rotation matrix 
of this symmetry operation, I is the identity matrix, 
to is the position of the maximum in the resulting 
PTF and qo is the required translation to place the 
molecule correctly in the unit cell (i.e. that used to 
phase the observed structure factors), then 

(A- I )qo= to  (3) 

It is assumed in this equation that the phasing com- 
ponent is described by the symmetry position (x, y, z). 
Certain components of qo may remain undetermined 
for a given choice of symmetry operation since the 
matrix ( A - I )  is singular for rotation axes and mirror 
planes. Thus, more than one symmetry position must 
be used to obtain a complete solution to the transla- 
tion for many space groups. In practice, Doesburg & 
Beurskens (1983) used difference coefficients, (Fobs-- 
Fcalc ) exp (27riaealc), to remove the contribution of 
the phasing model. These coefficients, containing 
information essentially on the symmetry-related 
molecules only, are thus used as F(h) in (2). They 
found this approach to be reliable for small molecules 
provided the oriented model represented 10% or more 
of the total diffracting power of the unit cell. 

The use of the PTF with calculated phases has been 
successfully applied to protein structures by Cygler 
& Anderson (1988b). Unlike Doesburg & Beurskens 
(1983), however, they performed the calculation in 
direct space rather than in reciprocal space, removing 
the density of the phasing model with a molecular 
envelope. Their procedure was expensive in comput- 
ing time, but they obtained good results, even with 
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the phasing component representing only 10-15% of 
the unit-cell contents. In a more recent development 
of this direct-space procedure, Cygler & Desrochers 
(1989) describe a full-symmetry translation function 
where the results from all symmetry elements are 
combined to optimize the signal. They also succeeded 
in greatly reducing computing time. 

The Patterson-based translation function and the 
PTF using phases calculated from partial models are 
formally close to one another. Thus, if we first con- 
sider just two symmetry operations, k and l, it may 
be shown that 
(a) for the Patterson method (see Tickle, 1985), 

Teatterson(t) E {Fobs(h)2- ~ ' , 2 = [ Fca,~(A,.,,h)] } 
h m 

v , v , X Fcalc(Akh)Fca~c(A , h) 

× exp { i[ rc'(Ak*h) - ~¢'(At*h) ] 

+ 27rih(dk - dr)} 

xexp[2,r i (A*k-A*)h. t];  (4) 

(b) for the PTF (using difference coefficients to 
remove the contribution from the phasing model), 

Tr,-rF(t) = E 
h 

x 

× 

=E 
h 

× 

[Fobs(h) ' * - F¢a,¢(Akh)] 

exp [ i~0'(Ak*h) + 27rih. (Akt + dk) ] 
i , Fcal¢(At h) exp [-iq~'(At*h) 

27rih'(Att + dl)] 

{[Fobs(h)/ ' * F~al¢(Akh)]-l} 

Fcatc(Akh)Foa~o(A,h) 

x exp {i[ •'(Ak*h) - , '(At*h)] 

+ 27rih-(dk -dr)} 

x exp [ 2'rri(Ak* -- At*)h.t]; (5) 

Ai and di are the rotation matrix and translation 
vector respectively of the ith symmetry operator, F'a,¢ 
is the calculated partial structure amplitude for the 
symmetry position (x, y, z) with ~' being the corres- 
ponding phase, Fob~ is the observed structure ampli- 
tude and t is the translation. Thus symmetry position 
k provides the phasing model, while symmetry posi- 
tion I provides the search model. The formulation of 
the PTF given by (5) differs from that given by (1) 
and (2); in the former, the phasing model and, con- 
sequently, the search model are moved with respect 
to an arbitrary origin while, in the latter, they remain 
fixed and the model electron density map is trans- 
lated. Both formulations, however, are equivalent to 
one another. Equations (4) and (5) are thus identical 
except in the first component of the Fourier coefficient 
of the summation. Use of full symmetry in the Patter- 
son-based function simply includes a summation of 

(4) over all pairs of symmetry operations k and l 
( k < l )  (Tickle, 1985). We may also obtain, by 
introducing the same summation in (5), a full sym- 
metry PTF in much the same manner as did Cygler 
& Desrochers (1989) for their direct-space procedure, 

~(~k . Fca,c(akh)]-1} TpTF(t) = ~ {[Fobs(h)/ ' * 
k<l  

; , r x Fca,c(Akh)Fca,c(A*h) 

x exp { i[,'(Ak*h) - •'(A*h)] 

+ 2 rrih.(dk - dz)} 

x exp [27ri(Ak*-- A*)h.t]) .  (6) 

In the following paragraphs we describe the use of 
both calculated phases from partial structures and 
isomorphous replacement phases in the application 
of the PTF in its reciprocal-space formulation to 
protein structure determination. Because of previous 
work on the PTF, which we have referred to above, 
our emphasis is on those aspects relating to the use 
of calculated phases. We have used the function in 
the full symmetry calculation [(6)] for comparison. 
We have tried removal of contributions from the 

Calculation of partial 
structure factors and phases 

(ctc~¢) for molecule 1 
(symmetry position ×,y,z) 

Calculation of electron density 
with F ~  and ctralc 

Calculate Fmodet 
from molecule 1 

coordinates trans- 
formed by n-th 

symmetry postion 

Masking of molecule 1 in 
electron density with its 

envelope to obtain pmoair~ 

Fourier transformation of 

p~,~ to obtain Fmoo~tioa 

Calculation of coefficients 
F.~odine0(h).F*,,~ct(h ) 

Fourier transformation 
to obtain S(I). 

Calculation of envelope of 
molecule l 

Fig. 1. Flow diagram for PTF in reciprocal space with elimination 
of phasing density by a molecular envelope. 
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phasing model both by difference coefficients and 
molecular envelopes. The protocol used when mask- 
ing the electron density of the phasing model is shown 
in Fig. 1. We begin with examples using the PTF to 
determine the translation of an oriented molecule or 
fragment to locate it correctly in the unit cell. This is 
followed with examples showing its use in determin- 
ing the translation required to locate an oriented 
component with respect to a crystallographic origin 
defined already by another component in the unit cell 
or by isomorphous replacement phases. The perform- 
ance of the PTF is compared with other commonly 
used translation functions. 

3. Materials 
3.1. Programs 

Rotation-function calculations were made with the 
program R O T F U N  written by Navaza (1987). Pro- 
grams for other translation functions used include 
S E A R C H  (SERC Daresbury Laboratory, 1986) for 
R-factor or correlation-coefficient searches (correla- 
tion between observed and calculated structure 
amplitudes) and T F S G E N  (Tickle, 1985) for a Patter- 
son-based method (Harada et al., 1981). Programs 
used for Fourier and structure-factor calculations and 
file manipulations were taken from the CCP4 suite 
(SERC Daresbury Laboratory, 1986). Comparisons 
with the PTF in direct space were made with the 
program R T R A N S  kindly provided by Drs Cygler 
and Desrochers. The full-symmetry PTF in its 
reciprocal-space formulation [(6)] was performed 
using a modified version of the program T F S G E N  
(program S Y M P T F ) .  

3.2. Introduction to structures used 

The structures used for our calculations were anti- 
gen-binding fragments (Fab and Fv) of antibody 
molecules. An Fab molecule is composed of a heavy 
(H) and a light (L) polypeptide chain and has, in 
total, four domains: VH, VL, CH1 and C L. Although 
the pairs VH/VL (variable dimer, Fv) and CH1/CL 
(constant dimer) associate by strong non-covalent 
interactions (CH1 and CL are, however, connected by 
a disulfide bridge), the connection between VH and 
CH1 and between VL and CL is maintained essentially 
by a flexible peptide link. Thus, while the quaternary 
structure of the variable dimer and the constant dimer 
may each separately be quite well conserved between 
different Fab structures, the relative orientation 
between them, described by the elbow angle, is highly 
variable. The search model for an Fab molecule using 
the molecular replacement technique therefore 
requires two independent components: the variable 
and the constant dimers (Cygler & Anderson, 1988a). 

3.2(i) FabE225-FabD1.3  complex. E225 is a 
monoclonal antibody (IgG2b, K) that recognizes an 

idiotope on the monoclonal anti-lysozyme antibody 
D1.3 (IgG1, K) (Amit, Mariuzza, Phillips & Poljak, 
1986). The complex, FabD1.3-FabE225, formed 
between the antigen-binding fragments of these two 
antibodies, crystallizes in the space group P21 (a = 
75.1, b=77.7, c=96.8A,  /3=111.8 ° ) with one 
molecule of complex (2 Fabs) in the asymmetric unit 
(Boulot et aL, 1987). Thus, four independent com- 
ponents must be oriented and positioned in the asym- 
metric unit: two dimers of each kind. The unrefined 
structure of FabD1.3 (Amit et al., 1986), as seen in 
the complex with hen egg-white lysozyme, FabD1.3- 
HEL, provided initial models for both variable and 
constant dimers. The rotation function was calculated 
using the program R O T F U N ;  data between the resol- 
ution limits of 10 and 4 A were included in the calcu- 
lation and the lower and upper radial limits of integra- 
tion in Patterson space were 4.5 and 25 ,~ respectively. 
Correct solutions for the variable dimers were first 
and third peaks of the rotation function (the second 
peak arose from the approximate twofold symmetry 
of the variable dimer from the first solution), while 
those for the constant dimers were given by the first 
and twelfth peaks. Each of these solutions gave peaks 
in the Patterson-based translation-function maps 
calculated with the program TFSGEN.  This located 
each of the four components separately with respect 
to a crystallographic origin. The remaining task was 
to relate each of these solutions to a common origin. 
In the polar space group P21, the choice of origin in 
directions x and z is restricted to 0 or ½; the choice 
in direction y, however, is arbitrary. Although the 
result of the translation function for one component 
may be used to fix an origin, additional information 
is required to locate the other three components with 
respect to the same origin. This was provided by the 
PTF using isomorphousphases. The crystal structure 
has been refined to 2.5 A resolution (Bentley et al., 
1990). 

3.2(ii) FabE5.2.  E5.2 is a monoclonal antibody 
(IgGl, K) that also recognizes an idiotope on the 
antibody D1.3. The Fab fragment crystallizes in the 
space group P21 with unit-cell parameters a = 44.5, 
b=  157.8, c=66 .9~ ,  /3=100.5°; there are two 
molecules in the asymmetric unit (Houdusse, Bentley, 
Boulot, Eisel6 & Poljak, unpublished results). There- 
fore, two variable and two constant dimers must be 
oriented and positioned in the asymmetric unit. 
Model structures for molectrlar-replacement were 
chosen from the refined structures oT-FabE225 and 
FabD1.3 (Bentley et al., 1990; Fischmann et al., 1991). 
Conditions for the rotation-function calculation were 
similar to those used for the FabD1.3-FabE225 com- 
plex. Solutions for the constant dimers were clearly 
given by the first two peaks of the rotation function, 
while those for the variable dimers were given by the 
first and third peaks. All four orientations gave very 
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clear maxima in the translation-function maps calcu- 
lated with the program TFSGEN. As with FabE225- 
FabD1.3, the next stage was to locate each component 
with respect to a common origin. Since the space 
group is also P2~, the same considerations apply. All" 
components were positioned with respect to a com- 
mon origin using phases from partial calculated struc- 
ture factors in the PTF in its reciprocal-space form. 
Refinement of the crystal structure at 2.6/~ resolution 
is currently in progress. 

3.2(iii) FvD1.3. FvD1.3 consists of the VH and VL 
domains of the monoclonal antibody, D1.3, associ- 
ated as a dimer by non-covalent interactions. It has 
been cloned into E. coli and expressed in quantities 
sufficient to achieve successful crystallizations 
(Boulot et al., 1990). The space group is P432~2 with 
a =90.6, c = 56.4 A and there is one molecule of 
FvD1.3 per asymmetric unit. The structure had been 
readily solved by molecular replacement using the 
refined atomic coordinates (Fischmann et al., 1991) 
of the variable dimer of FabD1.3-HEL. The rotation 
and translation functions were calculated with the 
programs R O T F U N  and TFSGEN, respectively, 
employing similar conditions to those described for 
FabE225-FabD1.3. The translation function showed 
the space group to be P432~2 and not its enan- 
tiomorph, P412~2. The structure has been refined at 
1.9/~ resolution (Bhat et al., 1990). Although the 
initial model coordinates for FvD1.3 were provided 
by the refined FabD1.3-HEL structure, the final 
refined model of the Fv fragment showed a difference 
in relative orientation between VL and VH of about 
3 °. Calculations with the PTF were made to test its 
performance against the Patterson-based translation 
function. 

4. Applications 

These structures were used to perform three series of 
trials of the PTF in reciprocal space. 

(i) In each of the three crystal structures given 
above, the individual components (i.e. dimers) were 
located separately with respect to a crystallographic 
origin using phases from partial calculated structure 
factors. This was achieved by locating symmetry- 
related molecules (or the symmetry elements of the 
unit cell) as described in §2. 

(ii) The function was used to locate the indepen- 
dently positioned components of the FabE225- 
FabD1.3 and FabE5.2 structures with respect to a 
common origin, again using phases from partial 
calculated structure factors. (This was not done 
for FvD1.3, which has one dimer per asymmetric 
unit.) 

(iii) For FabE225-FabD1.3, individual dimers were 
located in the unit cell by the PTF calculated with 

isomorphous phases. (No isomorphous data were 
available for the other two structures.) 

These are described successively in the three fol- 
lowing subsections. 

4.1. Search for symmetry elements with the phased 
translation function 

The PTF was calculated in reciprocal space as 
outlined above. Models of the Fab dimers were first 
correctly oriented but arbitrarily positioned in the 
unit cell. As described in §2, the models were first 
used to phase the observed structure amplitudes 
which had been expanded by crystal symmetry to P1. 
Contributions from the phasing models to the calcu- 
lated structure factors were removed by one of two 
procedures: 

(a) The difference coefficients (Fobs-Fcal¢)X 
exp(27riacal~) were substituted for F(h) in (2). 
The scale factor between Fobs and F~ajc was estimated 
by making a least-squares fit of (Fobs) tO (Fca~c) as a 
function of resolution. Even though only a small 
portion of the unit-cell contents was included in F~a~c 
(--~ of the unit cell for all three examples), it was 
found empirically that this scale factor, rather than 
some fraction of it, gave the best results. This gave, 
in fact, a difference map with the smallest root-mean- 
square (r.m.s.) density and was without large peaks 
or troughs at the site of the phasing model. We tried 
using weights calculated by the procedure of Read 
(1986) but this did not show any improvement over 
unweighted coefficients; however, this method for 
obtaining weights may be inappropriate when such a 
small fraction of the unit cell is used to calculate the 
structure factors. 

(b) The electron density of the phasing model in 
an Fobs, Otcalc Fourier map was masked out with a 
molecular envelope. The envelope was constructed 
on a three-dimensional grid directly from the atomic 
coordinates of the phasing model. The results of the 
PTF proved to be rather insensitive to the value of 
the constant density placed inside the envelope, but 
optimum results were obtained when this was close 
to zero. The electron density thus modified was then 
transformed by inverse Fourier summation to obtain 
coefficients corresponding to F(h) in (2). 

The structure factors corresponding to Fmodel(h) 
were calculated in P1 symmetry from the coordinates 
of the same model after transformation by one of the 
space-group symmetry operations. The PTF was then 
obtained as a Fourier summation using F(h)Fmode~(h)* 
as coefficients. 

4.1(i) FabD1.3-FabE225 and FabE5.2. Results of 
the PTF in reciprocal space as well as the other 
translation functions described in §3.1 are presented 
for both FabD1.3-FabE225 and E5.2 in Table 1. All 
calculations described here were performed in the 
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Table 1. Comparison of translation functions using FabD1.3-FabE225 and FabE5.2 

D1.3v, D1.3c and E225v, E225c denote  the variable and constant  dimers of  FabD1.3 and FabE225 respectively. E5.2v and E5.2c denote  
the variable and constant  dimers o f  FabE5.2 respectively; the molecule number  in the asymmetric  unit is given in parentheses. All trials 
shown here were made using diffraction data  in the resolution range 20-3.5/~. Peak heights are expressed in terms of  the r.m.s, value 
o f  the translat ion function. The signal-to-noise ratio is given in parentheses, fol lowed by the rank in height of  the correct peak. (a)  
PTF calculated in reciprocal space using molecular envelopes to mask density from phasing model.  See Fig. 1 for protocol. (b) PTF 
as in (a)  using the final refined coordinates.  (c) PTF calculated in direct space using RTRANS.  (d) PTF calculated in reciprocal space 
using SYMPTF. (e) Patterson-based translation function using TFSGEN. ( f )  Correlation-coefficient search using SEARCH. 

(a)  (b) (c) (d)  (e) ( f )  
Dimer PTF PTF R T R A N S  S Y M P T F  TFSGEN SEARCH 

Dl.3v 12.6 (2.6) 1 17.8 (5.7) 1 4.1 (2.7) 1 11.2 (3.0) 1 10.4 (2.9) 1 10.6 (3.4) 1 
DI.3c 8.2 (1.7) 1 8.8 (1.9) 1 3.1 (1.1) 1 4.8 (1.2) 1 6.0 (1.8) I 4.7 (1.6) 1 
E225v 8.8(1.7) 1 20.1(3.9) 1 2.0(1.1)1 6.0(1.8) 1 6.8(1.9) 1 6.2(1.8) 1 
E225c 4.3 (0.9) 5 10.4(2.2) 1 2.6(1.0) 1 2.8(0.8)6 3.8(0.9) 2 4.0(1.1) 1 
E5.2v 7.7 (1.8) 1 12.8 (2.5) 1 4.6 (1.3) 1 5.3 (1.4) 1 6.9 (2.2) 1 5.7 (2.2) 1 

E5.2c(1) 10.0 (2.0) 1 13.3 (2.6) 1 8.3 (2.3) 1 7.2 (2.4) 1 7.9 (2.3) 1 7.4 (2.6) 1 
E5.2v(2) 5.9 (1.2) 1 12.3 (2.5) 1 5.8 (1.5) 1 4.9 (1.4) 1 4.8 (1.7) 1 5.7 (2.0) 1 

E5.2c 6.0 (1.3) 1 10.3 (2.0) 1 5.1 (1.3) 1 6.6 (1.7) 1 7.5 (2.5) 1 6.6 (2.1) 1 
(S/N)* 1.6 2.9 1.5 1.7 2.0 2.1 

* Average signal-to-noise ratio for each column. 

resolution range of 20-3.5 A. For the space group 
P2,,  it follows from (3) that if (tx, O, tz) are the 
coordinates of the correct peak in the PTF, then the 
required translation to place the phasing model cor- 
rectly in the unit cell is (-½ tx, 0, -½ tz). (The choice 
of y coordinate of a single dimer is arbitrary if con- 
sidered on its own.) The results of the PTF for the 
FabE225-FabD1.3 complex and FabE5.2, expressed 
as peak height in r.m.s, units for the correct solution, 
are given in column (a) of Table 1. For both struc- 
tures, contributions from the phasing models were 
removed using difference coefficients and molecular 
envelopes although only the results for the latter are 
shown since the two procedures produced similar 
values. The performance of the PTF using refined 
coordinates of FabE225-FabD1.3 are shown in 
column (b) for comparison. Our protocol for the PTF 
in reciprocal space (Fig. 1) was compared with the 
PTF in direct space using RTRANS  (column c), the 
PTF in reciprocal space using SYMPTF (column d), 
the Patterson-based approach using TFSGEN 
(column e) and the correlation coefficient search with 
SEARCH (column f).  

For space group P2,,  our reciprocal-space pro- 
tocol, the SYMPTF procedure and the direct-space 
RTRANS  procedure are all, in principle, equivalent 
since there are only two symmetry positions. Although 
each procedure gives approximately the same perfor- 
mance, as judged by the signal-to-noise (S/N) ratiot 
averaged over all dimers, it is interesting to note the 
variation in the S /N ratio of a given dimer for the 
three methods of calculation (Table 1). Since the 
observed diffraction data and the model structures 
are the same in each case, these differences must arise 
from the different methods of computing the transla- 

t Le. the ratio o f  the height of  the correct peak to that  of  the 
largest spurious peak. 

Table 2. Phased translation function in reciprocal space 
( PTF) and direct space ( RTRANS)  for FvD1.3 

The translation vector was calculated using equation (3). The height 
of  the correct peak (always the highest in this example) followed 
by the signal-to-noise ratio are given for both translation functions. 
Peak heights are expressed in terms of  the r.m.s, value of  the 
translation function.  

Equivalent PTF R T R A N S  
position of  Translat ion vector peak peak 

search component  (qx, qy, qz) height height 

-x , -y , z+~ (0.604,0.589, - ) 12.5(2.3) 5.1 (1.3) 
-y+~,x+~,z+~ (0.603,0.589, - ) 10.3(1.8) 
y+~,-x+~,z+~ (0.602,0.591, - ) 11.0(2.3) - 

I -x+~,y+~,-z+ 3 (0.603, - ,0.803) 11.4(2.2) 7.3 (1.9) 
I 1,  I x + ~ , - y +  - z +  a ( - ,0.588,0.804) 10.5(2.1) 7.4(2.0) 

y ,x , - z  ( - , - ,0.792) 10.4(2.1) - 
- y , - x , - z+~-  ( - , - ,0.796) 11.2(2.1) - 
Combined* (0.600, 0.587, 0.806) 12.2 (1.8) 

* Result from combining the three symmetry operations in RTRANS. See 
text for comparisons with TFSGEN and SYMPF. 

tion function. TFSGEN and SEARCH performed 
equally well and produced the best results for these 
two crystal structures. We also draw attention to the 
difference in performance by TFSGEN and 
SYMPTF, given their similar bases [(4) and (5) 
respectively]. 

4.1(ii) FvD1.3. Results of the PTF for FvD1.3, using 
data between 20 and 3.5/~ resolution are shown in 
Table 2. The phasing component was assigned to the 
symmetry position (x, y, z) and the search component 
was generated by the symmetry position indicated in 
the first column of the table. For these trials, contribu- 
tions from the phasing model were removed by using 
both difference coefficients and molecular envelopes 
but, again, only the results of the latter are shown 
because of their similar performance. The third and 
fourth columns give the peak heights for the 
reciprocal-space PTF and RTRANS respectively. In 
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all instances, the correct peak was the highest. The 
translation (qx, qy, qz), as deduced from (3), is given 
for each symmetry position in the second column; 
those coordinates left blank are indeterminate. As 
may be seen, at least two suitably chosen runs of the 
PTF must be performed to obtain a complete solution, 
but of course all combinations should be exploited 
to obtain maximum benefit. Although RTRANS pro- 
vides a means for combining the results from all 
symmetry operations, it only deals with those sym- 
metry axes parallel to crystallographic axes in its 
present form. Thus we show results for three sym- 
metry operations only, both for the case where each 
is considered separately (which is equivalent to our 
reciprocal-space protocol) and for where they are 
combined. The full-symmetry calculation in 
reciprocal space with SYMPTF gave a comparable 
result to RTRANS, with the correct peak at (0.603, 
0.589, 0.802) of height 14.6 r.m.s, units and a S /N 
ratio of 1.9. Unlike RTRANS, all symmetry positions 
were used in this calculation. Thus, the full-symmetry 
PTF calculations, whether in direct or reciprocal 
space, gave a result inferior to those where each 
symmetry operation was used separately. By way of 
comparison, the program TFSGEN (which also uses 
all symmetry positions) gave a similar result with the 
correct peak at height 17.4 r.m.s, units positioned at 
(0.602 0.590, 0.802) and a S /N ratio of 1.9. The 
correlation-coefficient search (program SEARCH) 
was not tested here because of the large computing 
time required to cover the asymmetric unit of this 
space group. 

Trials of the PTF in reciprocal space were made 
using just the coordinates of the VL domain of the 
FvD1.3 dimer, constituting about ~ of the unit-cell 
contents, for calculating phases. In these runs, the 
contributions from the phasing components were 
removed by molecular envelopes. Although six of the 
seven runs gave the correct peak in first position 
(5.2-6.6r.m.s. units), the second peak was always 
comparable in height. When difference coefficients 
were tried, the correct peaks, although identified from 
prior knowledge of their true positions, were not 
significant in height. Thus, removal of density from 
the phasing model with molecular envelopes gives 
cleaner results and their use may be essential when 
the model is only a small fraction of the unit-cell 
contents, or where it is poorer in structural homology 
to the unknown molecule. The performance of 
TFSGEN was notably superior to that using the PTF 
in this case, probably reflecting the advantage of using 
all eight symmetry positions; the correct peak was 
the maximum with a height of 9.2 r.m.s, units and a 
S /N ratio of 1.6. 

By using those symmetry positions which distin- 
guish P432~2 from P4~2~2, it was possible to choose 
the correct enantiomorphic space group or FvD1.3. 
For example, if the symmetry positions 3 and 4 in 

the International Tables for X-ray Crystallography 
(1974) (see rows 2 and 3 of Table 2) are chosen for 
generating the search component, then the true peak 
will occur at z = 0 for the correct enantiomorph and 
at z = ½ for the incorrect choice; in each instance, the 
x and y coordinates and the peak height remain 
unchanged by the space group chosen for the calcula- 
tion. The space group was clearly shown to be P432~2 
by this criterion. The indication, in fact, was less 
ambiguous than the result given by TFSGEN. Since 
four of the symmetry positions are common to both 
enantiomorphs, a peak should occur at the correct 
position in both space groups by the latter method; 
the distinction must be made on height since it will 
be halved in magnitude for the incorrect choice. 
Accordingly, TFSGEN gave a peak of height 
8.3 r.m.s, units (S/N ratio of 0.8) at the correct posi- 
tion, when calculated in P412~2. The same consider- 
ations apply to SEARCH. By using the appropriate 
symmetry positions in the PTF, however, the choice 
depended on the restricted values allowed for the z 
coordinate of the correct peak as well as its height. 

4.2. Search for a common origin for several components 
using partial calculated structure factors 

The particular problem posed by the crystal struc- 
tures FabE225-FabD1.3 and FabES.2 lies in position- 
ing the independent components (four in both cases) 
with respect to a common origin in space group P21. 
As discussed at the beginning of this section, the 
biggest difficulty arises in determining the relative y 
coordinates of the dimers. Indeed, it was this problem 
which initially prompted us to use the PTF. 

The procedure differs in some details to those given 
in the previous subsection. First, one of the oriented 
dimers was correctly positioned in the unit cell (using 
TFSGEN); this served to define a crystallographic 
origin. Phases calculated with this component, using 
the full space-group symmetry, were applied to the 
observed structure amplitudes, which were sub- 
sequently expanded by crystal symmetry to P1. Con- 
tributions from the phasing models were removed as 
outlined above to obtain the coefficients F(h) for (2). 
From the coordinates of the second oriented dimer, 
the structure factors 17model(h) were calculated in sym- 
metry P1. The PTF thus gave the translation required 
to locate the second component correctly with respect 
to the origin defined by the first dimer. 

Trials with FabD1.3-FabE225 were made for all 
possible combinations of dimers as phasing and 
search components. Results are given in Table 3. 
Columns (a) and (b) contain results usin~ data in 
the resolution range of 20-6 and 20-3.5 A respec- 
tively, employing molecular envelopes to remove con- 
tributions from the phasing model. Column (c) shows 
results from data in the resolution range 20-3.5 ~ ,  
using difference coefficients to remove contributions 
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from the phasing component. Finally, in column (d), 
we give results using the refined coordinates of the 
complex; the resolution range was also 20-3.5 A and 
molecular envelopes were used to mask density from 
the phasing models. Peak heights are expressed in 
terms of the r.m.s, value of the function as described 
for Table 1. Comparison of columns (a) and (b) 
shows a clear advantage in using high-resolution data. 
The use of difference coefficients gave comparable 
results to those obtained by masking with molecular 
envelopes at high resolution only; at 6 A resolution, 
difference coefficients were significantly inferior (data 
not shown). 

The number of dimer pairs giving a clear 
maximum was sufficient to provide a model of the 
FabD1.3-FabE225 complex as well as to furnish a 
generous cross-checking for internal consistency of 
the dimer positions thus obtained. These peaks 
assembled the four components in the asymmetric 
unit such that each variable dimer matched a constant 
dimer to give the correct covalent linkage between 
the light and heavy polypeptide chains. The absence 
of unacceptable intermolecular contacts in the unit 
cell further confirmed that the correct solution for 
the complex had been obtained. 

Similar trials were made with data from FabE5.2. 
This structure gave better results than the Fab-Fab 
complex, showing the benefit of more accurate model 
coordinates. The heights of the correct peaks ranged 
from 11.0 to 7.1 r.m.s. From these peak positions, a 
consistent model of two Fab molecules in the asym- 
metric unit could be constructed, providing a starting 
point for the refinement now in progress. 

Table 3. The search for a common origin for indepen- 
dent components: PTF of FabD1.3-FabE225 using 

partial calculated structure factors 

D1.3v, D1.3c, E225v and E225c are defined in Table 1. Columns  
(a),  (b) and (c) are results using the initial unrefined coordinates;  
in (d) the refined structure was used. The density from the phasing 
component  was removed by means of  the mask for (a) ,  (b) and 
(d)  and by means of  a difference map in (c). The resolution range 
of  the data  used for each set o f  trials is indicated at the head of  
each column. The results are shown as peak heights as in Table 1. 

Phasing Search (a)  (b) (c) (d)  
component  component  20-6/~ 20-3.5 ,~ 20-3.5 A 20-3.5/~, 

DI.3v E225v 5.6(1.2) 1 14.0(1.2) 1 12.8(2.7) 1 18.3(3.9) 1 

Dl.3c 

E225v 

E225c 

E225c 5.8 (1.4) 1 10.2 (2.3) 1 8.2 (1.7) 1 13.2 (3.0) 1 
D1.3c 5.3 (1.3) 1 10.3 (2.1) 1 9.7 (2.3) 1 13.9 (3.4) 1 
E225v 4.5 (0.9) 2 8.2 (1.9) 1 6.8 (1.5) 1 15.5 (3.2) 1 
E225c 3.3 (0.7) 19 5.8 (1.3) 1 5.6 (1.3) 1 10.3 (2.2) 1 
DI.3v 4.6 (1.1) 1 8.7 (1.8) 1 7.7 (1.6) 1 15.9 (3.6) 1 
E225c 4.0(0.9)5 5.5(1.3) 1 5.5(1.4) 1 11.8(2.0) 1 
D1.3v 3.9 (0.9) 5 11.3 (2.4) 1 10.2 (2.3) 1 21.3 (4.4) 1 
D1.3c 3.8 (0.8) 6 6.2 (1.3) 1 5.9 (1.4) 1 13.2 (3.1) 1 
E225v 3.0(0.8)68 8.6(1.9) 1 7.3(1.5) 1 14.1(3.1)1 
D1.3v 4.8 (1.0) 2 9.3 (2.1) 1 8.8 (1.9) 1 17.9 (3.9) 1 
Dl.3c 2.8 (0.7) 69 5.1 (1.1) 1 4.5 (0.9) 3 12.1 (2.6) 1 

Table 4. PTF using isomorphous phases of FabD1.3- 
FabE225 

D1.3v, D1.3c, E225v and E225c are defined in Table 1. The height 
of  the correct peak (always the maximum of  the function in this 
example) and the signal-to-noise ratio (given in parentheses) are 
shown for each search component .  Peak heights are expressed in 
terms of  the r.m.s, value of  the function. 

Resolution range 
Search component  20-6/~ 20-4 .~ 

D1.3v 6.7 (1.8) 16.1 (3.4) 
D1.3c 7.1 (1.3) 11.4 (2.9) 
E225v 6.3 (1.7) 14.5 (3.1) 
E225c 6.5 (1.7) 12.0 (2.9) 

4.3. Phased translation function with phases from 
isomorphous replacement 

Intensity data for two isomorphous derivatives of 
the FabE225-FabD1.3 complex, prepared from 
tripotassium pentafluorodioxouranate (K3FsUO2) 
and tetrakis(acetoxymercurio)methane, were meas- 
ured. These gave interpretable difference Patterson 
functions but subsequent heavy-atom parameter 
refinement and isomorphous phase determination 
showed a serious lack of isomorphism and phases 
were not used beyond 4 ~ resolution (mean figure of 
merit was 0.53). The observed structure amplitudes, 
weighted by their figures of merit, and the isomor- 
phous replacement phases were used to form the 
coefficients F(h) in (2). The crystallographic origin 
of reference was thus defined by the heavy-atom 
positions of the derivatives. Since the hand of the 
heavy-atom configuration was not known, both enan- 
tiomorphic sets of isomorphous phases were tried in 
the PTF. Partial structure factors for each of the 
oriented variable and constant dimers were calculated 
in symmetry P1 to provide the coefficients Fmode ! 
in (2). 

All four components gave clear peaks in the PTF, 
at positions consistent with those indicated by 
TFSGEN, for one choice of heavy-atom enan- 
tiomorph only. The results shown in Table 4 give, for 
each dimer, the heights of the true peak (always the 
maximum in this example) and the S/N ratio. From 
these peak positions, a consistent model of a complex 
of two Fabs could be constructed in the unit cell. As 
may be seen, the results are significantly better at 4 
resolution than they are at 6A,  in spite of the 
increased deviation from isomorphism at higher res- 
olution. Phases from the other enantiomorph gave 
peaks of much lower weight (maximum observed was 
5.3 r.m.s, units at 4 ,~ resolution) which were not 
consistent with the results of TFSGEN and from 
which no acceptable solution for the complex could 
be constructed. The application of the PTF as 
described here actually leads to the initial model used 
to refine this structure at 2.5/~. 

4.4. Effect of errors in orientation 

We compared the sensitivity of the different transla- 
tion functions to errors in orientation. In these tests, 
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Table 5. Effect of  orientation errors on translation func- 
tions for FabD 1.3- FabE 225 

Calculat ions made  using data  from the complex FabE225-FabD1.3 
to place D1.3v in the unit cell. Peak heights are expressed as in 
Table 1. (a)  Reciprocal-space PTF using isomorphous phases to 
4 A, resolution. (b) Reciprocal-space PTF using calculated phases 
at 3.5 A, resolution. (c) Direct-space PTF (RTRANS) at 3.5/~,. (d)  
Patterson search (TFSGEN) at 3.5/~ resolution. (e) Correlat ion 
coefficient search (SEARCH) at 3.5 A, resolution. 

Orientation (a) (b) (c) (d) (e) 
error (°) PTF (iso) PTF (calc) RTRANS TFSGEN SEARCH 

0 16.1 (3.4) 1 12.6 (2.6) 1 4.1 (2.7) 1 10.4 (2.9) 1 10.6 (3.2)1 
2 14.6 (3.0) 1 10.5 (2.1) 1 3.6 (2.4) 1 7.9 (1.7) 1 8.4 (2.8) 1 
4 12.6 (2.4) 1 8.8 (1.8) 1 2.7 (1.5) 1 6.7 (1.6) 1 7.2 (2.3) 1 
6 11.5(2.3) 1 6.6(1.1) 1 2.0(1.1) 1 5.1(1.1) 1 6.0(1.8) 1 
8 8.9(1.6) 1 5.3(1.0) 1 1.4(0.9)4 3.7(0.8)6 4.8(1.5) 1 

10 6.7(1.5) 1 6.1(1.1) 1 1.3(0.9)4 2.8(0.6) 11 3.3(1.0) 1 
12 5.7 (1.2) 1 3.8 (0.7) 13 - - 3.1 (0.8) 2 
14 4.4 (0.9) 2 3.5 (0.7) 43 - - 2.8 (0.7) 13 

Table 6. Effect of  orientation errors on translation func- 
tions for FvD1.3 

All calculations were performed in the resolution range 20-3.5 A, 
using the unrefined coordinates of  FvDI.3. Peak heights are 
expressed as for Table 1. (a)  The Patterson-based method using 
TFSGEN. (b) The PTF reciprocal space following the protocol in 
Fig. 1. The phasing component  was provided by the symmetry 
position (x, y, z) and the search component  by symmetry position 
(-y+½,x+½, z+~). 

Orientation error (a)  (b) 
(°) TFSGEN PTF 
0 22.0 (1.6) l 12.5 (2.3) 1 
3 15.1 (1.5) 1 8.6 (1.7) 1 
6 8.5 (1.5) 1 5.0 (1.0) 1 
9 4.9 (1.0) 1 3.8 (0.8) 7 

we subjected the variable dimer of D1.3 in the com- 
plex FabE225-FabD1.3 to increasing deviations in 
one of the Eulerian angles, each time calculating the 
reciprocal-space PTF with both isomorphous phases 
and calculated phases (phasing with one molecule 
and searching with a symmetry-related component), 
and direct space PTF (RTRANS) ,  the correlation 
coefficient search (SEARCH)  and the Patterson- 
based search (TFSGEN).  All translation functions 
were calculated at 3.5/~ resolution except the PTF 
with isomorphous phases, which was calculated to 
4.0 A,. The results of these trials are given in Table 5. 
The search with TFSGEN was the most sensitive to 
error for this example; the correct peak was the 
maximum only when the orientation was less than 
6-8 ° in error. By comparison, the PTF calculated with 
isomorphous phases proved to be the most robust 
since the correct peak remained the maximum until 
the error exceeded 12-14 °. The reciprocal-space PTF 
using calculated phases and the correlation- 
coefficient search gave results of comparable quality 
although with the latter being marginally superior for 
this particular example; the correct peak persisted as 
being maximum up to an error of 10-12 ° in orienta- 
tion. The PTF using R T R A N S  gave results only 
slightly better than TFSGEN; we find no obvious 

explanation for why R TRANS performed worse than 
the reciprocal-space protocol in this case. The 
difference in performance of the PTF when using 
calculated and isomorphous phases arises from the 
fact that, in the former case, both p and Pmodel in (1) 
are influenced by errors in the model while, in the 
latter, only Pmodel is  affected. In contrast to FabD1.3- 
FabE225, trials with FvD1.3 showed that TFSGEN 
was more robust to orientation errors than the 
reciprocal-space PTF (see Table 6), suggesting that 
the performance of a particular translation function 
may be influenced more by the example (the data 
and the model) than the method. 

5. Discussion 

The PTF has not been widely used in the molecular 
replacement technique (see §2). The object of this 
paper has been to demonstrate its versatility and to 
describe the conditions which, in our experience, have 
given the best results. Since most of the necessary 
elements of software, such as structure-factor calcula- 
tion and Fourier transformation routines, exist in the 
normal repertoire of programs used by crystallogra- 
phers, the PTF may be readily included as an indepen- 
dent approach to solving the translation problem. 

In all trials reported here, the PTF performed best 
when carried out at high resolution, whether with 
isomorphous or calculated phases. Removal of 
density from the phasing model is essential when 
calculated phases are used, since its dominating effect 
in the Fourier maps would otherwise lead to large 
spurious peaks. Masking by molecular envelopes gave 
cleaner results than did subtraction by using 
difference coefficients, especially when the phasing 
component was a small fraction of the unit-cell con- 
tents. When using difference coefficients, we con- 
sistently found that equating (Fobs) to (Feaze) as a 
function of resolution gave the best performance, in 
spite of there being only a small fraction of the crystal 
structure contributing to Feaze. Calculation times 
proved to be modest: a complete run with FvD1.3 
took about 200 s on a VAX Station 3500 for both the 
difference coefficient and masking protocol (Fig. 1). 
Removal of density corresponding to known portions 
of the crystal structure was not necessary when 
isomorphous phases were used, and this has also been 
the experience of other researchers. In difficult cases, 
however, there may be an advantage in removing 
density from those components already placed in 
maps phased by isomorphous replacement. 

In the case of FvD1.3, the use of full symmetry in 
the PTF, whether in direct or reciprocal space, proved 
not to be as good as when each symmetry position 
was used individually in the reciprocal-space pro- 
cedure. Indeed, the results published by Cygler & 
Desrochers (1989) indicate that combining all sym- 
metry positions in their direct-space procedure need 
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not always give a result superior to that where each 
symmetry is considered separately. We have found 
no clear explanation for this behaviour. 

Our experience shows that the reciprocal-space 
PTF appears comparable in performance to other 
methods tried, namely, those provided by the pro- 
grams R T R A N S ,  T F S G E N  and SEARCH. This con- 
clusion is based on the S/N-rat io discrimination and 
in robustness to errors in orientation of the search 
model. The performance of a given translation func- 
tion probably depends greatly on the influence of the 
particular errors on the diffraction data and the 
model. Thus, for a particular structure, one method 
may perform significantly better than the others and 
it is worth exploiting all possibilities. For example, 
the reciprocal-space PTF performed better than 
T F S G E N  for FvD1.3 when the complete variable 
dimer was used as search model, while the reverse 
proved to be the case when only the VL domain was 
used, even though the same observed structure ampli- 
tudes were employed [see § 4.1(ii)]. 

The structural examples we have discussed in this 
paper have concerned mainly Fab molecules, where 
one problem has been to locate the flexible variable 
and constant domains correctly with respect to one 
another in the unit cell. Two recent reports have 
shown how correlation between observed and model 
intensities (Yeates & Rini, 1990) or squared normal- 
ized structure amplitudes (Briinger, 1990) may be 
used to refine the relative orientations and transla- 
tions within a flexible domain structure such as an 
Fab. This is referred to as Patterson correlation (PC) 
refinement. A separate translation search must, of 
course, be made to place the molecule in the unit 
cell. This method is very useful when the relative 
orientation and translation of either VL and VH of the 
variable dimer or CL and CH1 of the constant dimer 
are too much in error to produce an identifiable signal 
in the rotation function. The range of convergence of 
the PC method (Briinger, Leahy, Hynes & Fox, 1991) 
probably corresponds to the observed spread in 
angular and translational differences in the domain 
structure of variable dimers (Lascombe et al., 1989). 
It may happen, however, that the relative orientation 
of the variable and constant dimers (defined as the 
elbow angle) of the search Fab model is very different 
in the unknown structure. A case in point is FabD1.3 
where this angle is 172 ° in the complex with lysozyme 
and 138 ° in the complex with FabE225. The necessity 
to use several search models with elbow angles spaced 
systematically at suitable intervals could involve a 
lengthy calculation. PC refinement performed on the 
variable and constant dimers separately, however, 
may be sufficient to provide models that lead to suc- 
cessful translation searches for each of these com- 
ponents independently since we have found little 
difficulty in dealing with structures having four Fabs 
in the unit cell. 

One additional use of the PTF which we have not 
tried here is to use the method to locate sets of 
heavy-atom coordinates from several isomorphous 
derivatives relative to the same crystallographic origin 
and the same enantiomorphic hand. This could prove 
particularly useful for polar space groups in which 
the patterns of heavy-atom substitution are compli- 
cated. If Fp is the native structure amplitude, FHp 1 
is the structure amplitude of derivative 1, FHI is the 
calculated heavy-atom structure factor of derivative 
1 and apE is the native protein phase calculated using 
the derivative 2 only, then the Fourier transform of 

[FHPI(h)  - F p ( h ) ]  exp [iOtpE(h)]" F H I ( h ) *  

would give a peak corresponding to the translation 
required to bring the heavy-atom positions of deriva- 
tive 1 to the same origin as derivative 2, provided the 
choice of enantiomorphic hand is compatible. Unlike 
the procedures suggested by Rossmann (1960) and 
Kartha & Parthasarathy (1965), which use the correla- 
tion between two Patterson functions, the PTF gives 
the result as a single vector rather than as a compli- 
cated set of cross-vectors between the two sets of 
heavy-atom structures. 

The PTF provides a simple means for referring 
independent fragments or molecules in the asym- 
metric unit to a common origin and this is probably 
the most useful aspect of the function. It is par- 
ticularly efficient at this task since such a search must 
be made over the whole unit cell; unlike the R-factor 
(or correlation-coefficient) search, the calculation is 
not demanding in CPU time. An advantage not to be 
overlooked is that it offers an alternative to other 
translation functions. Thus, difficult cases in 
molecular replacement may benefit greatly by the 
correlation of results obtained by two or more 
independent translation functions. 

Note added inproof: Since this article went to press, 
a publication by Driessen, Bax, Slingsby, Lindley, 
Mahadevan, Moss & Tickle (1991) has appeared 
which also draws attention to the similarity between 
the phased translation function and Patterson-based 
methods. 

We are greatly indebted to Dr Jorge Navaza for 
invaluable discussions and, in particular, for suggest- 
ing the formulation of the full-symmetry PTF in 
reciprocal space. 
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Abstract 

By use of the antisymmetric characteristic method, 
(p2,2t)-symmetry three-dimensional space groups 
Gt3 "p2 (p = 3, 4, 6) are derived. 

Introduction 

Crystallographic (p2)-symmetry three-dimensional 
p2 space groups G 3 ( p  = 3, 4, 6) were derived by Kar- 

pova (1980a, 1980b), Chubarova (1983) and Zamor- 
zaev, Karpova, Lungu & Palistrant (1986). From 73 
symmorphic space groups (;3 were derived 1025 
junior G p2 (96 32 G42 62 G3 +438 +491 G3 ), from 54 
hemisymmorphic G3, 945 junior G3 p2 (75 G332+444 

42 G3 + 426 G 62) were derived and from 103 asymmor- 
p h i c  G3,  1650 junior G3 p2 (138 G32+785 G42+727 
G 62) were derived. Thus the category G~ 2 (p = 3, 4, 6) 
consists of 3620 junior groups (309 G32+ 1667 G 42 
1644 G62). By the use of the generalized antisymmetric 
characteristic method (AC method) introduced by 

0108-7673 / 92/030322-07503.00 

the author (Jablan, 1990, 1991), some of these results 
will be corrected and all the crystallographic space 
groups of colour multiple antisymmetry G~ p2 (p = 3, 
4, 6 ) will be derived. 

1. Some general remarks on (p2) and 
(p2, 2 i) symmetry 

(p2) symmetry is a particular case of general P sym- 
metry with P = Dp, where Dp is the irregular dihedral 
permutation group, generated by the permutations 
e l = l , . . . , p  and e 2 = ( 2 p ) , . . . , ( [ ( p + l ) / 2 ] p  - 
[ (p+  1) /2]+2)  (p ->3), satisfying the relations 

eP = e l=  (ele2) 2= E. 

For p = 4 q + 2  (qe N),  the group Dp is reducible, so 
the relationship 

O4q+2--~ {e, 2, e2} × {e~q+'} = D2q+I x C2 

holds, where {e 2, e2} and {el 2q+l} denote, respectively, 
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